

Krantz

Diffuseur mural à fentes WSD....

Système de distribution d'air

Préambule

Le diffuseur mural à fentes WSD, réglable, de Krantz est un diffuseur au profil mince et d'aspect esthétique. Etant très peu encombrant, il est destiné à être monté dans des parois usuelles en placoplâtre. Il génère un flux d'air mélangé turbulent.

Le diffuseur mural à fentes convient tout particulièrement pour les immeubles de bureaux et administratifs en combinaison avec des systèmes air-eau (par ex.: activation du noyau de béton, plafond rafraîchissants et voile de refroidissement).

Le montage du caisson de raccordement et l'apport d'air se font de préférence à partir d'un couloir. L'élément à fentes est inséré dans le caisson de raccordement depuis l'intérieur du local une fois que la construction du local est achevée ; de ce fait il n'est pas exposé pendant les travaux de construction. De plus, il est facile à démonter pour les travaux de nettoyage conformément à la norme VDI 6022

De par leur mode de construction, les caissons de raccordement et diffuseurs ont un très faible niveau sonore et une atténuation acoustique élevée. Si le caisson est muni d'un habillage acoustique, il est souvent superflu d'installer un silencieux anti-téléphonie.

Le diffuseur mural à fentes est disponible en version pour air pulsé ou air repris, ou bien en version mixte air pulsé/repris.

Fonction aéraulique

Le diffuseur mural à fentes est utilisé pour des locaux de profondeur > 4 m. La hauteur de montage recommandée se situe entre 2.4 et 3.5 m.

Selon les besoins, ce diffuseur est réalisé avec un ou rangs $^{1)}$ et dans des longueurs de 525, 1 050 ou 1 125 mm $^{2)}$.

Les jets d'air pulsé sont répartis en éventail. Après 1 à 2 m, on obtient un flux diffus qui se répand au niveau du sol en direction de la façade à la façon d'un flux à déplacement d'air. On obtient ainsi un haut niveau de confort thermique dans le local. Le gradient vertical de température est nettement en dessous de la valeur limite autorisée de 2 K/m. ⁴⁾

Les vitesses moyennes de l'air ambiant et la température locale dans la zone de séjour constituent des critères importants d'un climat ambiant confortable. On peut faire appel pour son évaluation au risque de courant d'air (DR = draught rating).

On convient fréquemment pour les bâtiments à exigences de climat ambiant élevées comme par exemple les immeubles de bureaux et administratifs d'un risque de courant d'air de DR \leq 15%. Les personnes qui en raison de leur activité présentent un important développement d'énergie (> 1,2 met) sont moins sensibles à la détérioration du confort thermique par des courants d'air. C'est pourquoi dans ces cas d'application (par exemple: locaux commerciaux, musées ou restaurants) on peut admettre un risque de courant d'air de DR = 20%. Les paramètres aérauliques en résultant peuvent être obtenus du tableau qui suit.

Champ d'application

Diffuseur mural à fe	ntoo	DR -	15 %	DR 20 %		
Diliuseur murara re	illes	1 rang	2 rangs	1 rang	2 rangs	
Débit max. par m de diffu	useur					
$\dot{V}_{A max}$	m ³ /(h•m)	120	190	140	240	
Hauter de soufflage						
recommandée H	m	2,4 – 3,5				
Profondeur du local	m	≥ 4	≥ 5	≥ 4	≥ 5	
Puissance de refroidisser	ment	Voi	r diagramı	ne 1, pag	ge 5	
max.	W/m ²					
Différence max. de temp	érature					
air pulsé/air ambiant $\Delta \vartheta$	+6 à -8 +6 à -1			ı –10		

Construction

Le diffuseur mural à fentes est constitué d'un caisson avec tubulure de raccordement et d'un élément de soufflage à fentes.

L'élément à fentes est très facile à monter ; il est tout simplement inséré dans le caisson de raccordement lorsque la construction du local est terminée.

Le caisson de raccordement est monté soit dans la paroi en placoplâtre (type Z), soit derrière cette paroi (type H) durant l'installation du système de climatisation, et relié au réseau de gaines, voir figure 1.

Le caisson de raccordement est fixé aux panneaux muraux, depuis l'intérieur du local, grâce à ses cornières latérales et à l'aide de vis pour placoplâtre.

De par leur construction, tous les modèles de diffuseur WSD ont une atténuation acoustique élevée.

Un habillage acoustique résistant à l'abrasion est disponible en option pour le caisson de raccordement, ce qui ne change en rien la profondeur du caisson. Grâce à cet habillage acoustique, il est souvent superflu d'installer un silencieux anti-téléphonie.

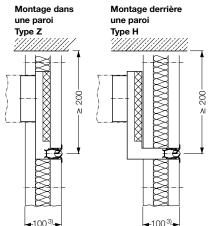
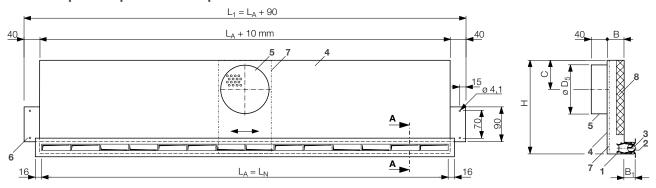


Figure 1: Types de montage du diffuseur mural à fentes

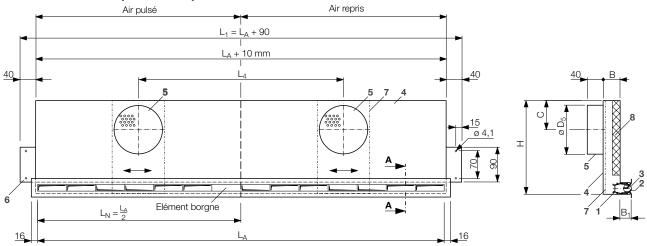
Le diffuseur mixte air pulsé/air extrait possède deux segments indépendents de même longueur. L'élément de soufflage est muni, en son milieu, d'une fente borgne de façon à éviter tout débordement d'air pulsé dans l'air extrait. Les tubulures de raccordement pour l'air pulsé et l'air extrait peuvent être livrées, en option, avec un clapet V réglable depuis le local.

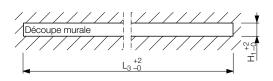
Les éléments de distribution d'air en matière plastique sont préréglés en usine et protégés contre tout déréglage intempestif au moyen de cames de verrouillage.

¹⁾ Modèle à 3 rangées possible sur demande

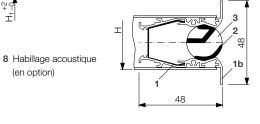

²⁾ Autres longueurs ou en bande continue sur demande

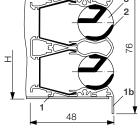
³⁾ Autres épaisseurs de paroi sur demande


⁴⁾ voir aussi à ce sujet la norme DIN EN ISO 7730


Dimensions

Diffuseur pour air pulsé ou air repris


Diffuseur mixte air pulsé/air repris


Légende pour toutes les 3 Canal de soufflage pages:

- - 4 Caisson de raccordement
- 1 Profilé du diffuseur 5 Tubulure de raccordement 1b Profilé de contact mural 6 Cornière de fixation
- 2 Elément de distribution 7 Clapet V (en option)
- réglable depuis le local

Modèle à 1 rang

Coupe A - A (échelle 1 : 2)

Modèle à 2 rangs

- u uii			cgiabic	аораю	10 1000																
							Mon	tage	Mon	tage	5	Sans h	abillage	Э		Ave	ec habi	llage a	coustic	que	
Modèle	Type de						Z	2)	Н	H ²⁾		acoustique			Montage Z 2)			Montage H 2)		H ²⁾	Poids
Iviodele	diffuseur	L _A	L ₁	L ₃ 1)	H ₁ 1)	L_4	В	B ₁	В	B ₁	Н	С	ø D ₅	G	Н	С	ø D ₅	Н	С	ø D ₅	G
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	mm	mm	mm	mm	mm	mm	kg
	Air pulsé	525	615	541					45		140	52	79	2,6		52	79		52	79	3,6
	ou air	1 050	1 140	1 066	34	_	45	24	60	99	180	75	124	5,7	240	75	124	240	75	124	7,0
1 rang	repris	1 125	1 215	1 141					60		180	75	124	6,1		75	124		75	124	7,6
	mixte	1 050	1 140	1 066	34	530	45	24	45	99	140	52	79	4,9	240	52	79	240	52	79	6,8
	IIIIXLE	1 125	1 215	1 141	34	567	45	24	45	99	140	J2	19	5,2	240	52	19	240	52	19	7,3
	Air pulsé	525	615	541							180	62	99	3,4	240	62	99	240	62	99	4,1
	ou air	1 050	1 140	1 066	62	_	45	24	60	99	240	92	159	7,2	280	112	199	240	92	159	8,4
2 rangs	repris	1 125	1 215	1 141							240	92	159	7,7	280	112	199	240	92	159	8,9
	mixte	1 050	1 140	1 066	62	530	45	24	60	99	180	62	99	6,4	240	62	99	240	62	99	7,7
	ITIIXLE	1 125	1 215	1 141	02	567	45	24	00	99	100	02	99	6,8	240	02	99	240	02	99	8,2

(en option)

¹⁾ Découpe murale 2) Montage Z = dans la paroi ; Montage H = derrière la paroi

Critères de confort et dimensionnement

Figure 2: Diffuseur mural à fentes dans la cafétéria d'un immeuble de bureaux

Critères de confort 1) et dimensionnement

Le dimensionnement du diffuseur à fentes est basé sur le respect des vitesses maximales admissibles de l'air ambiant dans la zone de séjour pour le refroidissement. La vitesse de l'air ambiant est fonction de la charge de refroidissement qui doit être évacuée du local. La puissance de refroidissement spécifique maximale \dot{q} est fonction de la hauteur de soufflage et de la vitesse maximale admissible u de l'air ambiant, (diagramme 1) . On détermine en premier lieu le débit spécifique maximal $\dot{V}_{\text{Sp\,max}}$ en fonction de la vitesse de l'air ambiant u, de la hauteur de soufflage H et de la différence de température air pulsé/air repris $\Delta \vartheta_{\rm max}$ selon diagramme 1.

Le débit $\dot{V}_{\text{Sp tats}}$ apporté au local ne doit pas dépasser le débit spécifique maximal $\dot{V}_{\text{Sp max}}$ pour respecter les vitesses maximales admissibles de l'air ambiant. La largeur de couverture E et l'entr'axe minimal entre deux diffuseurs A_{min} peuvent être déterminées à partir du débit spécifique maximal $\dot{V}_{\text{Sp max}}$ et de la longueur de couverture.

$$E = \frac{\dot{V}}{\dot{V}_{Sp \, max} \cdot L_E} \qquad \qquad A_{min} \geq E - L_N$$

Figure 3: Diffuseur mural à fentes dans la zone d'accueil d'un immeuble administratif

Légende:

DR = Draught rating (risque courant d'air) en %

= Largeur de couverture du flux d'air pulsé en m

= Longueur de couverture du flux d'air pulsé en m (correspond à la profondeur du local)

= Longueur du diffuseur en m L_A

= Longueur nominale du diffuseur en m (Pour un diffuseur mixte, seulement la partie air pulsé)

= Nombre de diffuseurs

= Débit total d'air pulsé en m3/h

= Débit par diffuseur en m³/h = $\frac{\dot{V}}{L_{\perp}}$ = Débit/mètre de longueur active de diffuseur en m³/(h•m)

 $\dot{V}_{Sp\;max} = \; \vec{De} \; \vec{b} \; \vec{$

. V_{Sp tats} = Débit spécifique effectif par m² de surface du local en m³/(h•m²)

 $\dot{V}_{A \text{ max}} = D\acute{e}bit \text{ max. par m de diffuseur en m}^3/(h \cdot \text{m})$

 $\Delta \vartheta_{ ext{max}}$ = Différence max de température air pulsé/repris en K

= Puissance de refroidissement spéc. max. en W/m² = Hauteur du local en m

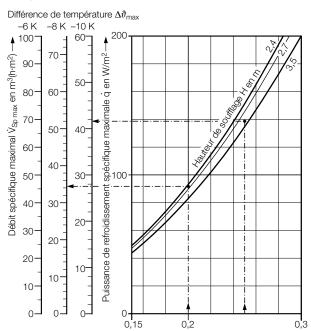
 H_{R}

= Hauteur de soufflage en m

= Entr'axe minimal requis entre deux diffuseurs en m = Vitesse max. adm. de l'air ambiant en m/s

= Niveau de puissance acoustique en dB(A)

= Perte de charge totale en Pa


Diffuseur mural à fentes

pour air pulsé mixte air pulsé/air repris ш L_{E} LE

¹⁾ Voir également TB 69 - Critères de dimensionnement pour le confort thermique

Critères de confort et dimensionnement

Diagrammes de dimensionnement

Vitesse maximale admissible de l'air ambiant u en m/s→

Diagramme 1: Débit spécifique maximal

Débit max. par m de diffuseur VA_{max} en m³/(h·m)−5 O 2 rangs (DR = 20 % 2 rangs (DR = 15 % 1 rang (DR = 20 %) 1 rang (DR = 15 %) 0,2 0,15 0,25 0,3 Vitesse max. adm. de l'air ambiant u en m/s -

Diagramme 2: Entr'axe minimal des diffuseurs

Exemple de dimensionnement

Diffuseur mural à fentes, version mixte, dans un bureau

Vitesse max. admissible de l'a	air ambiant	=	0,2 m/s
Hauteur sous plafond	H_R	=	2,7 m
Hauteur de soufflage	Н	=	2,5 m
Largeur du local	В	=	2,7 m
Profondeur du local	LE	=	5,5 m
Débit total d'air pulsé	\dot{V}_{Ges}	=	120 m ³ /h
Différence de température	$\Delta \vartheta_{\sf max}$	=	–8 K
Quantité	n	=	2 ((longueur $L_A = 1 050 \text{ mm}$)
Modèle	HI	=	Montage derrière la paroi,
			avec isolation acoustique

1 Vérification de $\dot{V}_{Sp tats} < \dot{V}_{Sp max}$:

$$\dot{V}_{\text{Sp tats}} = \frac{\dot{V}_{\text{Gas}}}{B \bullet L_{\text{E}}} = \frac{120}{2,7 \bullet 5,5} = 8 \text{ m}^3/(\text{h·m}^2)$$
Du diagramme 1: $\dot{V}_{\text{Sp max}} = 34 \text{ m}^3/(\text{h·m}^2) \Rightarrow$ condition satisfaite
$$2 \dot{V} = \frac{\dot{V}_{\text{Gas}}}{n} = \frac{120}{2} = 60 \text{ m}^3/\text{h}$$

$$3 \text{ E} = \frac{\dot{V}}{\dot{V}_{\text{Sp max}}} \bullet L_{\text{E}} = \frac{60}{34 \bullet 5,5} = 0,32 \text{ m}$$

= 0,525 m (:2 puisque version mixte

Da E < L_N , pas d'entraxe A_{min} requis

4
$$\dot{V}_{A}$$
 = $\frac{\dot{V}}{L_{N}}$ = $\frac{60}{0.525}$ ≈ 114 m³/(h·m)
 $\dot{V}_{A} < \dot{V}_{A \text{ max}} \Rightarrow \dot{V}_{A \text{ max}} = 120 \text{ m³/(h·m)}$ à partir du diagramme 2 pour DR = 15 %

Sélection: modèle à 1 rang WSD-K1-1050-HI

Valeurs du diagramme de la page 7:

$$\begin{array}{ll} \textbf{5} \;\; L_{WA} & \approx 30 \; dB(A) \\ \Delta p_{t \; air \; extrait} & \approx 33 \; Pa \\ \Delta p_{t \; air \; repris} & \approx 40 \; Pa \end{array}$$

Exemple de dimensionnement

Diffuseur mural à fentes, pour air pulsé, dans un restaurant

Vitesse max. admissible de l'a	air ambiant	=	0,25 m/s
Hauteur sous plafond	H_R	=	3,5 m
Hauteur de soufflage	Н	=	3,2 m
Largeur du local	В	=	20 m
Profondeur du local	LE	=	5 m
Débit total d'air pulsé	V _{Ges}	=	3 600 m ³ /h
Différence de température	$\Delta \vartheta_{\sf max}$	=	–10 K
Quantité	n	=	15 ((longueur $L_A = 1 050 \text{ mm}$)
Modèle	Z	=	Montage dans la paroi,
			sans isolation acoustique

1 Vérification de $\dot{V}_{Sp \ tats} < \dot{V}_{Sp \ max}$:

$$\dot{V}_{\text{Sp tats}} = \frac{\dot{V}_{\text{Ges}}}{B \cdot L_{\text{E}}} = \frac{3600}{20 \cdot 5} = 36 \, \text{m}^3/(\text{h·m}^2)$$

Du diagramme 1: $\dot{V}_{\text{Sp max}} \approx 41,5 \, \text{m}^3/(\text{h·m}^2) \Rightarrow$ condition satisfaite

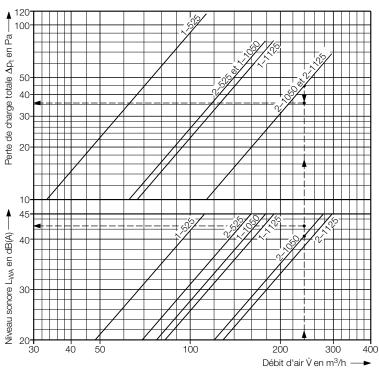
2
$$\dot{V}$$
 = $\frac{\dot{V}_{Ges}}{n}$ = $\frac{3600}{15}$ = 240 m³/h
3 E = $\frac{\dot{V}}{\dot{V}_{Sp \, max}} \bullet L_{E}$ = $\frac{240}{41,5 \bullet 5}$ = 1,16 m
A_{min} $\geq E - L_{N}$ = 1,16 - 1,05 = 0,11 m

4
$$\dot{V}_A$$
 = $\frac{\dot{V}}{L_N}$ = $\frac{240}{1.05}$ = 229 m³/(h·m)
 $\dot{V}_A < \dot{V}_{A \, max} \Rightarrow \dot{V}_{A \, max} = 240$ m³/(h·m) à partir du diagramme 2 pour DR = 20 %

Sélection: modèle à 2 rangs **WSD-Z2-1050-Z**

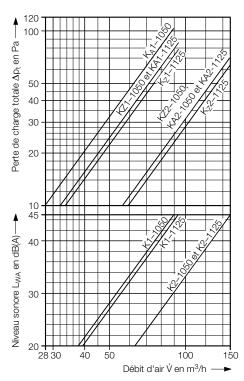
Valeurs du diagramme de la page 6:

5
$$L_{WA}$$
 $\approx 43 \text{ dB(A)} [41,5 \text{ dB(A)} + 2 \text{ dB(A)}]$
 Δp_t $\approx 36 \text{ Pa} [45 \text{ Pa} - 20 \%]$


19 F p. 6 UZ:ZU1Z/1

Diffuseur mural à fentes

Feuille de dimensionnement pour modèles Z et ZI, dans une paroi

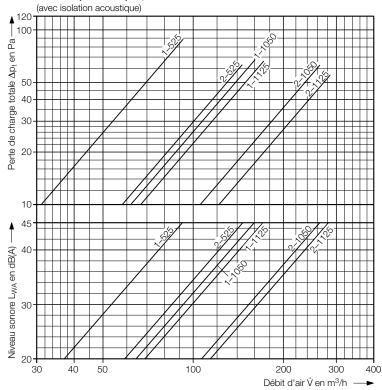

Diffuseur pour air pulsé, modèle ZI

(avec isolation acoustique)

Diffuseur mixte, modèle ZI

(avec isolation acoustique)

Modèles


1 = 1 rang 2 = 2 rangs Longueurs de diffuseur:

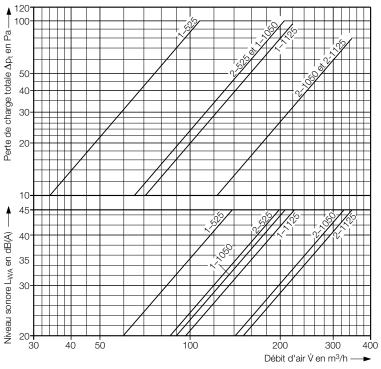
525, 1 050 und 1 125 [mm]

Exemple 2-1050: Exécution à 2 rangs

Longueur du diffuseur: 1 050 mm

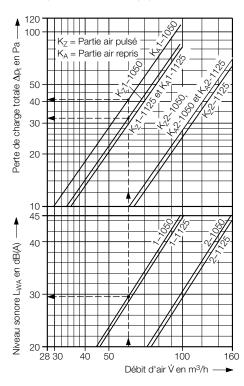
Diffuseur pour air repris, modèle ZI

Tableau de correction pour modèle Z


(sans isolation acoustique)

		Air Air		Mi	xte
		pulsé	repris	Air pulsé	Air repris
WSD1-525-Z	L _W	+5	+3	-	-
WSD1-323-Z	Δр	-10 %	- 5 %	-	-
WSD1-1050-Z	L _W	+3	+2	+	3
WSD1-1030-Z	Δр	-9 %	-8 %	-6 %	- 5 %
WSD1-1125-Z	L _W	+3	+2	+	3
WSD1-1125-Z	Δр	-6 %	-10 %	-6 %	-6 %
WOD 0 505 7	L _W	+5	+2	-	_
WSD2-525-Z	Δр	-20 %	-25 %	-	-
WCD 0 1050 7	L _W	+2	+1	+	2
WSD2-1050-Z	Δр	-20 %	-15 %	-15 %	-15 %
W/CD 0 1105 7	L _W	+2	+1	+	1
WSD2-1125-Z	Δр	-14 %	-14 %	-15 %	-15 %

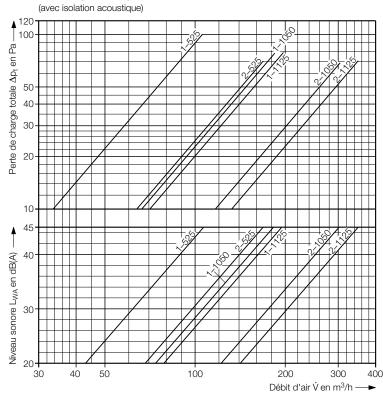
Feuille de dimensionnement pour modèles H et HI, derrière la paroi


Diffuseur pour air pulsé, modèle HI

(avec isolation acoustique)

Diffuseur mixte, modèle HI

(avec isolation acoustique)


Modèles

1 = 1 rang 2 = 2 rangs

Longueurs de diffuseur: 525, 1 050 und 1 125 [mm] Exemple 2-1050: Exécution à 2 rangs

Longueur du diffuseur: 1 050 mm

Diffuseur pour air repris, modèle HI

Tableau de correction pour modèle H

(sans isolation acoustique)

		Air	Air	Mi	xte
		pulsé	repris	Air pulsé	Air repris
WSD1-525-H	L _W	+5	+2	-	_
WSD1-525-H	Δρ	-10 %	- 5 %	-	-
WSD1-1050-H	L _W	+3	+2	+	3
W3D1-1030-H	Δρ	-10 %	-6 %	-6 %	-5 %
WSD1-1125-H	L _W	+3	+2	+	3
W3D1-1125-H	Δр	-6 %	-9 %	-6 %	-6 %
WCD 0 FOF II	L _W	+5	+1	-	_
WSD2-525-H	Δр	-20 %	-22 %	-	-
WCD 0 1050 H	L _W	+2	+1	+	1
WSD2-1050-H	Δр	-12 %	-16 %	-10 %	-12 %
WSD2-1125-H	L _W	+2	+1	+	1
WSD2-1125-H	Δр	-16 %	-14 %	-12 %	-12 %

Niveau de puissance acoustique et atténuation avec isolation acoustique

Diffuseur pour air pulsé

	5/111	5									
Longueur	Débit du	Perte de	١.								
du diffu-	diffuseur	charge	Niveau de puissance acoustique								
seur		totale		L _W en dB							
				ı							
L _A	Ÿ	Δp_t	L _{WA}	!	quen						
mm	m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Modèle Zi	, 1 rang										
	50	22	20	27	22	24	18	13	—	—	_
525	80	58	35	31	34	38	33	30	22	11	_
	115	114	45	35	39	46	41	40	39	25	_
	80	16	20	29	23	25	17	11	-	-	_
1 050	130	42	35	36	37	39	33	29	21	11	-
	180	82	45	42	45	46	42	40	37	28	18
	85	16	20	24	24	25	18	10	-	-	-
1 125	140	44	35	35	38	38	33	30	20	10	-
	190	81	45	45	48	47	41	40	38	30	
Modèle H	l, 1 rang										
	60	31	20	26	23	25	18	12	-	-	-
525	100	85	35	30	35	38	33	29	20	10	-
	140	166	45	33	40	45	42	40	38	24	_
	90	19	20	21	28	25	17	9	—	—	-
1 050	150	55	35	30	41	38	32	29	24	14	-
	210	100	45	36	48	46	41	40	38	29	_
	100	20	20	28	26	25	18	11	—	—	-
1 125	160	51	35	34	38	39	32	29	19	_	-
	225	100	45	39	49	46	40	40	38	28	
Modèle Z	, 2 rangs										
	70	13	20	31	23	25	17	10	—	-	-
525	115	35	35	42	35	38	33	30	18	8	-
	160	66	45	48	41	45	42	42	35	19	_
1 050	120	11	20	28	24	25	16	11	-	_	-
1 050	200	32	35	40	38	38	32	30	22	14	-
	280	62	45	47	49	46	42	41	34	29	_
1 105	130	13	20	29	25	25	16	12	_		-
1 125	215 300	36 70	35 45	40	39	38 47	32 41	30 41	22 35	15 31	_
		70	45	40	31	47	41	41	33	31	
Modèle H											_
505	85	17	20	26	24	25	17	11	-	_	-
525	145	49	35	44	35	37	35	28	23	11	_
	200	95	45	54	40	44	45	38	36	21	_
1.050	140	13	20	27	26	26	16	-	-	10	-
1 050	235 330	37 72	35 45	47 54	39	39 45	33 42	29 40	23	10 26	_
			-	-	-	-			৩৬	20	<u> </u>
1 125	150	15	20 35	27	27	26 39	17 34	10 29	22	-	-
1 125	250 350	41 95	45	47 54	40	45	43	40	38	27	_
	330	90	L 45	54	40	45	40	40	00	21	

Remarque:

Niveau sonore ≤ 6 dB ne sont pas cotées

Atténuation acoustique en dB 1)											
		Fréquence médiane d'octave en Hz									
	125	125 250 500 1 K 2 K 4 K 8 K									
WSD1- 525	2	2 4 9 14 18 20 23									
WSD1-1050	3	3 5 10 16 20 22 26									
WSD1-1125	4	4 6 11 17 21 23 26									

 $^{^{1)}\,}$ Les valeurs s'appliquent à 1 rang ; pour 2 rangs, elles sont supérieures de 1 dB

Diffuseur mixte

Dilluse	ui iiiixu											
Longueur du diffu- seur	Débit du diffuseur	cha	e de irge ale	Niveau de puissance acoustique L _W en dB					ique			
L _A	Ÿ	∆ p _t i	n Pa	L _{WA}	Fréc	quen	ce m	édia	ne d'	octa	ve er	n Hz
mm	m ³ /h	air pulsé	air repris	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Modèle Zi	, 1 rang											
1 050	39 63 87	15 39 74	20 52 98	20 35 45	23 33 38	18 32 40	24 38 46	19 34 42	10 30 42	- 22 34	- 13 25	
1 125	40 65 92	14 38 75	17 41 82	20 35 45	22 33 39	20 33 40	25 38 45	18 33 42	10 30 41	- 23 38	- 13 28	
Modèle H	l, 1 rang											
1 050	43 72 98	18 46 86	23 58 110	20 35 45	25 34 39	20 33 41	23 39 45	20 33 43	11 30 42	- 22 33	- 14 26	
1 125	45 75 102	15 43 83	16 45 86	20 35 45	21 34 40	19 34 41	24 37 45	17 33 42	11 30 40	- 24 39	- 14 29	
Modèle Zi	, 2 rangs						1	1		1		
1 050	63 102 140	13 33 62	13 34 65	20 35 45	32 40 44	19 39 49	25 38 44	18 34 42	9 30 41	20 36	9 25	
1 125	64 106 150	11 32 64	13 37 74	20 35 45	33 41 45	20 38 49	24 39 46	19 33 42	9 29 41	19 36	- 10 24	
Modèle Hi	, 2 rangs											
1 050	70 115 160	14 37 70	14 37 70	20 35 45	33 40 43	20 39 48	26 38 45	19 33 42	- 30 41	- 21 37	- - 23	
1 125	72 117 165	12 34 68	13 37 74	20 35 45	34 41 44	21 38 48	23 38 47	19 34 42	10 29 40	- 20 37	- 11 26	_ _ _

Diffuseur pour air repris 2)

Longueur du diffu- seur	Débit du diffuseur	Perte de charge totale	Niveau de puissance acoustique L _W en dB								
LA	Ÿ	Δp_t	L _{WA}	Fré	quen	ce m	édia	ne d'	octa	ve er	n Hz
mm	m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Modèle ZI	, 1 rang										
525	40 65 95	15 43 89	20 35 45	25 29 32	22 30 34	23 38 46	19 34 42	12 29 39	- 25 38	- 15 31	
1 050	65 110 160	11 31 66	20 35 45	22 31 37	24 34 40	24 40 48	19 34 41	10 27 39	_ 21 37	- 12 28	
1 125	70 120 170	11 27 64	20 35 45	21 32 40	25 35 42	24 39 47	18 34 41	10 28 40	- 20 36	- 11 26	
Modèle H	l, 1 rang										
525	45 75 105	17 50 100	20 35 45	21 28 32	23 31 36	22 38 46	20 35 42	11 29 40	- 24 37	- 14 30	
1 050	75 130 185	12 38 78	20 35 45	24 34 39	26 38 42	24 38 44	19 32 40	- 29 39	- 26 40	- 15 32	
1 125	80 135 200	13 37 80	20 35 45	25 35 37	27 38 44	23 39 43	19 31 41	10 30 40	_ 24 36	- 14 28	_ _ _

²⁾ Valeurs pour exécution à 2 rangs sur demande

Niveau de puissance acoustique et atténuation sans isolation acoustique

Diffuseur pour air pulsé

Longueur	Débit du	Perte de										
du diffu-	diffuseur	charge	Niveau de puissance acoustique									
seur		totale		L _W en dB								
L _A	Ÿ	Δpt	L _{WA}	Fré	quen	ce m	édia	ne d'	octa	ve er	ı Hz	
mm	m³/h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K	
Modèle Z,	1 rang											
	40	13	20	22	20	24	20	-	–	_	-	
525	65	35	35	30	31	37	35	26	20	11	-	
	95	72	45	35	38	45	43	40	36	27	\dashv	
1 050	70 115	11 30	20 35	20 31	20 34	25 39	35	26	19	8		
1 000	160	60	45	38	42	46	44	39	34	23	10	
	75	11	20	21	21	26	20	_	_	_		
1 125	125	29	35	32	35	40	35	27	18	-	-	
	175	56	45	39	43	47	44	40	35	24	11	
Modèle H	, 1 rang	1	1									
	50	19	20	24	21	24	21	_	-	_	-	
525	85 115	54 102	35 45	27 30	32 38	37 44	35 44	27 40	19 36	12 28	- 8	
	80	13	20	27	24	26	17	10	-	20	_	
1 050	135	39	35	32	37	39	32	29	23	10	_	
1 000	190	75	45	37	45	47	41	41	35	25	10	
	85	13	20	28	26	27	16	11	_	_	_	
1 125	145	38	35	33	38	39	32	30	23	_	-	
	200	73	45	38	46	48	41	40	36	27	11	
Modèle Z,	2 rangs											
	60	8	20	20	23	24	20	_	_	_	-	
525	100	21 40	35 45	36	35 40	36 41	36 45	28 39	17 36	23	-	
	140 115	9	20	17	22	24	19	10	30	23	\dashv	
1 050	190	25	35	29	34	38	34	30	19	_	_	
	265	48	45	37	41	45	43	41	33	24	_	
	125	10	20	18	23	24	19	10	_	_	_	
1 125	200	26	35	30	35	37	34	30	20	_	-	
	280	50	45	38	42	45	42	42	31	21	10	
Modèle H												
505	75	11	20	27	20	24	21	15	-	_	-	
525	120 170	28 55	35 45	33	30 35	34	36 43	28 40	23	11 21	-	
	135	10	20	17	24	25	18	10	- 30		\exists	
1 050	220	28	35	30	37	38	33	30	21	_	_	
. 555	305	53	45	36	44	45	42	41	37	23	_	
	145	11	20	18	25	25	17	11	_	_		
1 125	235	30	35	29	36	38	34	31	20	-	-	
	330	58	45	37	45	44	43	41	36	22	11	

Remarque:

Niveau sonore ≤ 6 dB ne sont pas cotées

	Atténuation acoustique en dB 1)										
		Fréquence médiane d'octave en Hz									
	125	125 250 500 1 K 2 K 4 K 8 K									
WSD1- 525	1	2	6	8	8	8	10				
WSD1-1050	1	1 3 7 9 10 10 12									
WSD1-1125	2	2 3 8 10 11 11 12									

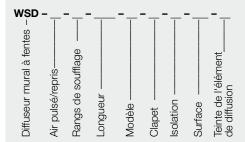
¹⁾ Les valeurs s'appliquent à 1 rang ; pour 2 rangs, elles sont supérieures

Diffuseur mixte

80 58 79 45 40 37 42 46 38 32 2	e en Hz						
seur totale L _W en dB L _A V Δp _t in Pa air pulsé repris L _{WA} Fréquence médiane d'octave mediane	e en Hz						
L _A V Δp _t in Pa air air pulse repris Modèle Z, 1-rang	1 K 8 K 12 -						
mm m ³ /h air air dB(A) 63 125 250 500 1 K 2 K 4 Modèle Z, 1-rang 1 050 58 31 42 35 35 30 37 36 26 20 1 80 58 79 45 40 37 42 46 38 32 2	1 K 8 K 12 -						
mm m ³ /h air air dB(A) 63 125 250 500 1 K 2 K 4 Modèle Z, 1-rang 1 050 58 31 42 35 35 30 37 36 26 20 1 80 58 79 45 40 37 42 46 38 32 2	1 K 8 K 12 -						
Pulsé repris	 12						
Modèle Z, 1-rang 1 050 35 12 16 20 26 18 22 21 -							
35 12 16 20 26 18 22 21 — — 1 1 050 58 31 42 35 35 30 37 36 26 20 1 80 58 79 45 40 37 42 46 38 32 2							
1 050 58 31 42 35 35 30 37 36 26 20 1 80 58 79 45 40 37 42 46 38 32 2							
80 58 79 45 40 37 42 46 38 32 2							
	26 —						
	-						
	- -						
	12 -						
	27 9						
Modèle H, 1-rang							
38 13 17 20 25 17 21 22 -	- -						
	11 -						
	27 —						
	_ -						
	13 -						
92 64 67 45 40 38 44 45 40 33 26 —							
Modèle Z, 2 rangs							
60 10 11 20 28 20 24 19 7 - -	_ -						
	9 — 21 —						
	21 -						
62 9 10 20 22 18 23 20 7 — - 1 1 125 103 27 30 35 37 34 35 35 27 19	9 -						
	27 -						
Modèle H, 2 rangs							
67 12 12 20 27 19 24 19 — — —							
1 050 110 30 31 35 36 32 35 36 27 18 -	_ _						
	_ _						
70 10 10 20 22 18 22 21	=+=						
	10 -						
	27 —						

Diffuseur pour air repris 2)

Longueur	Débit du	Perte de									
du diffu-	diffuseur	charge	charge Niveau de puissance acoustique								
seur		totale	L _W en dB								
LA	Ý	Δp_t	L _{WA} Fréquence médiane d'octave en Hz					ı Hz			
mm	m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Modèle Z, 1 rang											
	35	12	20	22	18	19	22	10	_	_	_
525	60	34	35	29	31	35	36	27	22	16	_
	85	70	45	33	38	44	43	38	38	34	-
	60	9	20	18	22	23	21	_	_	_	_
1 050	105	25	35	29	32	38	36	24	20	10	_
	150	54	45	38	38	46	45	36	35	27	10
	65	9	20	16	23	24	22	_	_	_	_
1 125	110	24	35	31	33	39	36	24	20	_	_
	160	57	45	39	39	47	45	37	36	28	11
Modèle H, 1 rang											
	40	14	20	20	19	19	22	_	_	_	_
525	70	40	35	28	32	34	35	27	21	15	_
	100	81	45	32	37	43	43	37	38	33	9
	70	11	20	22	21	24	21	10	_	_	_
1 050	120	31	35	30	32	38	34	28	25	13	_
	170	63	45	34	37	45	41	40	39	30	12
	75	11	20	23	22	24	22	_	_	_	_
1 125	125	28	35	31	33	39	36	24	21	_	-
	180	60	45	36	39	46	45	36	35	27	12


 $^{^{2)}\,}$ Valeurs pour exécution à 2 rangs sur demande

Caractéristiques et détermination de la référence

Caractéristiques

- Flux d'air de mélange turbulent avec haut niveau de confort thermique
- Construction compacte pour montage dans ou derrière une paroi en placoplâtre de 100 mm 1) d'épaisseur
- Longueurs de construction adaptées aux ossatures de parois usuelles
- Elément à fentes facile à installer depuis le local, après finition de ce dernier
- Elément à fentes facile à démonter pour nettoyage selon VDI 6022
- Pour air pulsé ou air repris, ou en version mixte air pulsé/repris
- Disponible avec 1 ou 2 rangs 2)
- Eléments de distribution d'air préréglés et bloqués par cames de verrouillage
- De par leur construction, tous les modèles ont un faible niveau sonore et un amortissement acoustique élevé
- Amortissement acoustique très élevé avec habillage acoustique résistant à l'abrasion (en option), classe de matériau A2 selon DIN 4102, partie 1, évitant d'installer un silencieux anti-téléphonie
- En option, clapet V réglable depuis le local
- Hauteur de montage recommandée: 2,4 à 3,5 m
- Débit jusqu'à 240 m3/h par m de longueur de diffuseur,

Détermination de la référence

Air pulsé/repris

Ζ = Air pulsé = Air repris = mixte 3) Κ

Rangs de soufflage

= 1 rang = 2 rangs Longueur 4)

= 525 mm $1050 = 1050 \, \text{mm}$ $1125 = 1125 \, \text{mm}$

Modèle 1)

Н = avec caisson de raccordement à monter derrière paroi de placoplâtre double, épaisseur de paroi = 100 mm

Ζ avec caisson de raccordement à monter entre paroi de placoplâtre double, épaisseur de paroi = 100 mm

Clapet

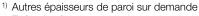
0 = sans clapet de débit

R = avec clapet de débit réglable depuis le local

Isolation

0 = sans isolation acoustique = avec isolation acoustique

Surface (du profilé de soufflage d'air)


elox = aluminium anodisé naturel (E6EV1)

9010 = teinte de la face apparente selon RAL 9010, satiné

= teinte de la face apparente selon RAL

Teinte de l'élément de diffusion

= noir analogue RAL 9005 = blanc analogue RAL 9010

²⁾ Exécution à 3 rangs sur demande 3) Pour longueurs de 1 050 et 1 125 mm

⁴⁾ Autres longueurs sur demande

Figure 4: Propagation de l'air mise en évidence par un test de fumée Ci-dessus: en biais vers le haut ainsi que vers le bas A droite: à l'horizontale

Texte de soumission

Texte de soumission – de air pulsé ou air repris

..... unité(s)

Diffuseur mural à fentes pour **air pulsé** ou **air repris**, au profil mince, à effet d'induction élevé générant un flux d'air mélangé turbulent dans la zone proche du mur devant le diffuseur; de ce fait réduction rapide de la différence de température et de la vitesse de sortie de l'air résultant en un flux d'air pulsé à faible turbulence dans la zone de séjour; pour montage dans ou derrière une double paroi de placoplâtre d'une épaisseur de 100 mm ¹⁾,

à soufflage ou aspiration horizontal,

Comprenant:

- un élément linéaire à fentes muni d'éléments de distribution d'air cylindriques préréglés en usine mais orientables pour modifier la direction de soufflage, la direction de soufflage, élément de soufflage dans une exécution à 1 ou 2 rangs, profilé de diffusion d'air montable depuis le local par simple clipsage.
- un caisson de raccordement avec cornières latérales pour fixation aux panneaux de placoplâtre, avec tubulure de raccordement circulaire à l'arrière; en option avec clapet V réglable depuis le local; en option avec isolation acoustique.

Matériaux:

- Profilé du diffuseur avec pièces d'extrémité en aluminium, en aluminium thermolaqué selon RAL 9010, blanc pur ²⁾ ou anodisé naturel (E6 EV1)
- Caisson de raccordement
- Caisson de raccordement en tôle d'acier zingué

Fabricant:		Krantz Komponenter
Type:	WSD	

Modèle mixte

..... unités

Diffuseur mural à fentes **mixte**, au profil mince, à effet d'induction élevé générant un flux de mélange turbulent dans la zone proche du mur devant le diffuseur; de ce fait réduction rapide de la différence de température et de la vitesse de sortie de l'air résultant en un flux d'air pulsé à faible turbulence dans la zone de séjour; pour montage dans ou derrière une double paroi de placoplâtre d'une épaisseur de 100 mm ¹⁾,

sous la forme d'une combinaison alternée de diffuseur d'air pulsé/ de reprise, à soufflage ou aspiration horizontal,

Comprenant:

- un élément linéaire à fentes muni d'éléments de distribution d'air cylindriques préréglés en usine mais orientables pour modifier la direction de soufflage, la direction de soufflage, élément de soufflage dans une exécution à 1 ou 2 rangs, profilé de diffusion d'air montable depuis le local par simple clipsage.
- un caisson de raccordement avec cornières latérales pour fixation aux panneaux de placoplâtre, subdivisé thermiquement et aérauliquement, avec tubulure de raccordement circulaire à l'arrière; en option avec clapet V réglable depuis le local; en option avec isolation acoustique.

Matériaux:

- Profilé du diffuseur avec pièces d'extrémité en aluminium, en aluminium thermolaqué selon RAL 9010, blanc pur ²⁾ ou anodisé naturel (E6 EV1)
- Caisson de raccordement
- Caisson de raccordement en tôle d'acier zingué

Fabricant:		Krantz Komponenten
Type:	WSD - K	

Sous réserve de modifications techniques.

¹⁾ Autres épaisseurs de paroi sur demande

²⁾ Autres teintes sur demande

